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1. INTRODUCTION 

A PLUME arising from a heated element is a problem of 
considerable interest in several engineering applications, e.g. 
hot-wire anemometry, Rows that arise in fire studies, cooling 
of electronic circuitry, meteorology, discharge of techno- 
logical waste, etc. There has been a substantial amount of 
work performed on free plumes from a line or a point thermal 
source over the last few years. A comprehensive review of 
this work has been given recently by Gebhart er al. [I]. 

The flow resulting from a horizontal line source of heat 
embedded at the base of a vertical adiabatic surface is con- 
ventionally referred to as the plane wall plume. Problems of 
this type have been investigated by Zimin and Lyakhov (21, 
Liburdy and Faeth [3], Jaluria and Gebhart [4], Afzal (51, 
Rao et al. (61, Krishnamurthy and Gebhart [7]. Morwald et 
al. [S], Lin and Chen [9] and Joshi [IO]. 

The purpose of the present Note is to re-examine the 
development of a laminar free convection plume rising 
from a steady line thermal source of heat embedded at the 
leading edge of an adiabatic vertical surface bounded by an 
insulated horizontal wall, which is placed at the level of 
the heat source, for moderately large values of the Grashof 
number. The flow field is divided into three distinct regions : 
the bulk flow, in which up to fourth-order correction the 
flow is potential, and two inner boundary layer regions. The 
method of matched asymptotic expansions is used to obtain 
a consistent solution by simultaneous/y including the effects 
of both inner boundary layers and of higher-order boundary 
layer corrections. The need for such a treatment is demon- 
strated by the recent work of Mdrwald er al. [S], Thomas 
and Takhar [Ill and Ingham and Pop [l2]. It is shown 
that the presence of the horizontal surface exerts quite a 
substantial influence on the higher-order approximations in 
the plume boundary layer and on the outer flow region. 

To the authors’ knowledge, no experimental investigation 
of the problem considered here has been reported in the 
literature. 

2. ANALYSIS 

The geometry considered in this study is equivalent to a 
line thermal source of heat embedded at the leading edge of 
an adiabatic vertical plane surface bounded by a horizontal 
wall, which is placed at the level of the heat source and is 
maintained at the temperature T, of the ambient fluid as 
shown in Fig. 1. The Cartesian coordinate system (.%p) with 
the origin at the leading edge of the vertical plate is oriented 
so that the positive .&axis is along the vertical plate in the 
upward direction and the p-axis is perpendicular to it. For 
this two-dimensional flow geometry the governing equations. 
using the Boussinesq approximation, were written in con- 

venient non-dimensional form by Riley [13] as 

where V’ = ?‘/?.r’+a’/~yv’. In these equations $ and Q 
are defined such that (z1.c) = (a+/@, -@/dx), Q = 
(T-T,) Gr’ ‘/T, and Gr =g/X.‘r,/v” is the Grashof 
number. 

For the present problem, the boundary conditions ofequa- 
tions (I) and (2) are 

a* dQ 
t//=.=.=0 on O=O, O<r<ic (3) 

$+Q=O on 0=5, O<r<-ri (4) 

$ = O(r), Q-t0 as r + tc, 0 < 0 < n/2 (5) 

along with the global heat flux condition (see Afzal [5]) 

(6) 

where Q = q,(pc,T,)- ‘. In the following, assuming the Gras- 
hof number to be large (Gr >> I), we shall obtain solutions 
for the velocity and temperature fields by applying the 
method of matched asymptotic expansions (see Van Dyke 
[ 141). The method of solution involves dividing the tlow field 
into three district regions : two are the inner regions close to 
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FIG. 1. Physical model and coordinate system. 
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the walls and the other is the outer region far from the 
walls. Separate, locally valid expansions of the stream and 
temperature functions are developed for these three regions. 

In the outer region the solution is given by 

$ = Gr-“J[~*(x,y)+Gr-“‘o~,(x,y)+h.o.t.] (7) 

and 

@ is exponentially small. (8) 

Substituting (7) and (8) into (I) and (2) gives that the first 
two outer approximations $* and $, are described by the 
Laplace equation 

V*&=O, n=2,3 (9) 

with the boundary conditions $Ax.O) and $“,(O,y) match 
with the inner expansions at the edges of the boundary layers, 
and the infinity condition 

v!&+o as r + co, 0 c e < x/2. (IO) 

In the inner regions, on the other hand, the solution sep- 
arates into two distinct forms. In the plume region there is a 
structure of the solution similar to that discussed in refs. 
[8,12], namely 

$=Gr-“5[+,(x,Y)+Gr-“‘$*(x,Y) 

+Gr-““‘$,(x, Y)+h.o.t.] (11) 

Q, = @,(x, Y)+Gr-‘/s(o*(x. Y)+Gr-3”o@,(x, Y)+h.o.t. 

(12) 

in which x( ~0) and the inner variable Y( = Gr’” y) are fixed 
as Gr -) co. It should be noted here that the third terms in 
the above expansions represent the effect of the horizontal 
wall on the development of the plume. Then the inner solu- 
tion associated with the horizontal viscous boundary layer 
can be expressed as in ref. [ 121, i.e. 

$ = Gr-“5[Gr-‘i’o~,(X,y)+Gr-‘is~*(X,~)+h.o.t.] 

(13) 

in which JJ( > 0) and the inner variable A’( = Gr’l”x) are fixed 
as Gr + co. Perturbation equations are then obtained by 
collecting like powers of Gr. Employing the usual asymptotic 
matching technique, boundary conditions are determined for 
each level of expansion in the inner and outer regions. Thus, 
after matching it is found that the terms of inner expansions 
(1 l)-( 13) must satisfy 

fY'+~fJ-'I-4ff;*+h =O 

a-'h;+JCf,h,)'=O 

f,(O) =f;(O) = f’,(a) = h’,(O) =h,(co) = 0 

c omf’,h,ds=Q; 
I 

(14) 

/;"-&ifif;+3(a:-f;') =o 

f,(O) =f;(O) =o 

~,;(cc~) = $f,(co)/sin(37r/lO) = 5,; (15) 

fY+3fif;+vlf;+h*=O 

a-‘h;+f(f,h;+2f’,h,+h,f;) =0 

fz(O) = f;(O) = h;(O) = h2(co) = 0 

fi(cO) = -~f,((co)COt(k/10) = K2 

I 
P(f',h~+f;h,)d~= 0; (16) 
0 

f~-~~f;+~(oi,oi,--f;f;)=O 

f,(O) =f;(O) = 0 

j;(m) = -&?,cot (3x/20)roi*; (17) 

~-‘h’;+3fih;+lf;h,+3h,/;-~bh;f,=0 

f,(O) = f;(O) = h’,(O) = h,(m) = 0 

f;(co) = &A,/sin(3n/20) = Kj 

I 
= (f;h,+f',h,)dq=O; (18) 
0 

where primes denote differentiation with respect to either 9 
or q. Inspection of equations (14)-(18) indicates that the 
decay of the velocity field is exponential in the plume layer 
whereas it is algebraic in the horizontal layer, i.e. the func- 
tions f,, f*, f* and f, behave as 

f,(?j) _ o?,?j+A,+o(rf-“3) 

f*(v) - W+‘4*+O(exP(-W)) 

J*(V) _ a*tS+A*+O(rT-*‘3) 

f&7) - w+A3+O(exp(-m)) (19) 

when q and rj tend to infinity. Here y = 3/5f,(cc) and the 
similarity variables n and tf are defined by 

tt = Y/x*/’ and rj = X/y”‘“. (20) 

From equation (9) and the matching considerations, the 
first two terms of the outer expansion (7) must satisfy 

V’IJ, = 0 

9*(x,0) =fl(oo)x"s, Yz(0.y) = 0; (21) 

v*lJx =o 

$,(x,0) = 0, $J(O,Y) = A,y"'O (22) 

along with the conditions at infinity (IO). Solving equations 
(21) and (22). we obtain 

J, = - f,(co)r"' 
sin[$(e-x/2)] 

sin (3x/10) 

IJ, = A,rJ~‘O$$$). (23) 

However, the inner expansions (I l)-(13) are not unique. To 
each of them may be added any one of an infinite set of 
eigensolutions which have the form 

$k = C, Gr-‘1+4”J:X)(I-4)/JF~(~) 

@k = C~Gr-‘d’X-l(l+i,)isH~(,) 
(24) 

and 
& = c~Gr-“+4”‘oy”-i”lo~~(~). 

(25) 

Here i.,, and 1; are the eigenvalues associated with the inner 
boundary layers while C, and C, are multiplicative constants, 
being indeterminate in general. The differential equations for 
the functions Fk and Hk are 

F~+jf,F~-~(2-31,)f’,F;+j(l-i.,)f’;F,+H, = 0 

(26) 

+;(l-l,)h’,F,+fh,F; = 0 (27) 

with the boundary conditions 

4(O) = F;(O) = F;(co) = H;(O) = H,(a) = 0. (28) 

Numerical integration of equations (26) and (27) subject to 
the boundary conditions (28) gives the Iirst value of & as 
rl, = S/3 for all values of 0. This eigenvalue introduces a term 
in the inner expansions (11) and (12) which in order of 
magnitude lies between the third and fourth terms of each 
series. The next eigenvalue is dependent on the value of u 
and is 3.231 for u = 6.7. Thus, the assumed form of the 
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solution in expansions (1 I) and (12) is appropriate to 
O(Gr- “3 and O(Gr-“‘o), respectively. 

The equation satisfied by Fk is 

F~-~f,~-~(s+~~)f’,F;-~(3-~~)f;F~ =o (29) 

which has to be solved subject to the boundary conditions 

Fdo) = F;(o) = F;(m) = o. (30) 

A numerical inspection of these equations shows that they 
do not possess a solution for any real & > 0 and therefore 
the expansion (13) is correct to O(Gr-2’5). 

The boundary layer characteristics such as skin friction 
coefficients 

C: = 2Gr-2:5~-Z’S(d~/dy)l_0, C:’ = Gr-2’s(do/dx),,, 

and the adiabatic wall temperature T. = (r,- r-)/r,, can 
now be expressed in terms of the similarity variables as 

C;/Gr; ‘!s = 2f’;(0)+2f;(0)Gr;“5+2f”(0)Gr;‘i’0+h.o.t. 

(31) 
C; ‘/Gr; Ii2 = f’;(O)+f;(O)Gr.;’ “‘+h.o.t. (32) 

TJGr; ‘Is = h,(0)+h,(O)Gr;“5+h,(O)Gr;“‘o+h.o.t. 

(33) 

where the local Grashof numbers Gr, and Gr, are defined as 
Gr, = gBr,.?/v2 and Gr, = gfir,jJ’/v2, respectively. 

3. RESULTS AND DISCUSSION 

The numerical results of the first- and second-order per- 
turbation functions cf,,h,) and Cf2,h2) have been obtained 
in Afzal [S] for the Prandtl numbers u = 0.72 (air) and 6.7 
(water). Here we have determined the numerical values of 
the perturbation functions (f,,f2 andf,, h,) associated with 
the contribution of the inner stream functions and tem- 
perature due to the presence of the horizontal wall for the 
same values of u, using the Runge-Kutta-Merson method 
and Newton iteration. In doing so, we have recomputed 
Afzal’s solution for (f,, h,) and (f2, h,). Graphs of these 
functions are displayed in Figs. 2 and 3 for u = 0.72 only. It 
should, however, be noted that Azfal’s results for the func- 
tions (f2, hJ are inconsistent with the very carefully per- 
formed numerical results found in this paper and this dis- 
crepancy may be seen by comparing our results, from Figs. 
2 and 3, with those from Figs. 5 and 6 in Afzal 151. Further, 
a detailed investigation of Afzal’s results show that they are 
themselves inconsistent. 

The numerical results for skin friction coefficients and 
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FIG. 2. The velocity functions associated with the plume 
boundary layer for c = 0.72. 
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FIG. 3. The temperature functions for d = 0.72. 

adiabatic wall temperature given by equations (3i)-(33) are 

- 

2.6201+0.8761Gr;‘~S 

+5.1859Gr;‘J’0+h.o.t. d = 0.72 
Ci/Gr;’ 5 = 1.8596+0.1245Gr-“’ .V 

+2.3932Gr;‘,“+h.o.t. c = 6.7 

(34) 

Ci ’ /Gr,; ‘I2 = 
i 

1.7479+ 1.9813GrJ: ““+h.o.t. B = 0.72 

0.5918+0.9794GrJ:“‘o+h.o.t. D = 6.7 

(35) 

1 

I +0.9875Gr-’ 5+5.9166Gr-’ ” li i 

+ h.o.t. 0 = 0.72 
r,jGr; ‘IS = 1+0.3895Gr;‘,‘+4.3291Gr;’ lo 

+ h.o.t. cr = 6.7. 

(36) 

Also, the equivalent line source temperature T, = 
&.iC,Q)- is 

Again, by inspection of the second-order terms in Afzal’s 
equations (84) and (85), we see that they are not in agreement 
with those given by equations (34) and (36) in the present 
paper. We believe our numerical results presented by equa- 
tions (34)-(36) to be accurate to the number of significant 
figures shown. Then, we notice from these equations that the 
skin friction coefficients and the adiabatic wall temperature 
on the axis of the plume are underpredicted by the first-order 
boundary layer solution. Further, the third-order correction 
terms add to the second-order terms in the underprediction 
of the values. For values of the Grashof number less than 
O(1Os) it is observed that the errors in using the first-order 
theory are incurred in excess of the order of 10%. On the 
horizontal wall the second-order correction reinforces the 
first-order correction term to further increase the magnitude 
of the skin friction. This increase in the skin friction 
coefficients and the adiabatic wall temperature implies a 
decrease of the thickness of the boundary layers for mod- 
erately large values of the Grashof number. 

In the expressions (34) and (36) it is observed that the 
effects of the horizontal wall leads to a correction of 
O(Gr-“‘4. The first eigensolution which modifies these 
results is of O(Gr- “‘) and therefore expressions (34)-(36) 
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are correct to the number of terms quoted. In fact, the eigen- 
solutions form the next correction to these expressions. In 
the work of Afzal[5) he ignores the effects of the boundary 
layer which is formed on the horizontal wall and hence hi 
solution technique is only correct up to, and including, his 
second term. In turn, this leads to smaller corrections to the 
skin friction and adiabatic temperature on the axis of the 
plume. In the present study, we have shown that the presence 
of the horizontal wall substantially changes the third-order 
boundary layer correction terms. We shall then have an 
adequate description of the plume Bow characteristics. 

The fluid llow pattern outside the inner boundary layers 
is shown in Fig. 4 for u = 0.72 with Gr = lo”‘, and similar 
results have been obtained for other values of the Grashof 
and Prandtl numbers. All these results show, as expected, 
that for a given value of the Grashof number the smaller the 
Prandtl number the more intense is the induced velocity. We 
also conclude from these figures that at a small distance from 
the horizontal wall the effect of the viscous layer is to make 
the streamlines enter the convective boundary layer such that 
they are convex upwards, whereas in the absence of the 
honzontal viscous layer the streamlines enter convex down- 
wards. It transpires that, rather than becoming less impor- 
tant, viscosity gets more and more dominant as we move to 
the outer edges of the inner boundary layers and the outer 
flow is rotational. It is thus quite conceivable that the com- 

x 
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FIG. 4. The streamlines associated with the outer flow at 
Gr = 10” for u = 0.72: (------) one term; ( -) two 

terms. 

plete Navier-Stokes equation has to be solved in the outer 
region. This is also suggested by the algebraic behaviour of 
cfi,f*) given by equation (19) when rj is large. This matter 
has been also discussed by Schneider [ 151, who pointed out 
that jets and plumes induce a rotational outer flow. Conse- 
quently, we question Afzal’s observation that for a plane 
plume with horizontal bounding surfaces, the outer layer is 
essentially inviscid. 
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